18省区市大到暴雨_: 重要历史事件的启示,能否为我们指明方向?

18省区市大到暴雨: 重要历史事件的启示,能否为我们指明方向?

更新时间: 浏览次数:48



18省区市大到暴雨: 重要历史事件的启示,能否为我们指明方向?各观看《今日汇总》


18省区市大到暴雨: 重要历史事件的启示,能否为我们指明方向?各热线观看2025已更新(2025已更新)


18省区市大到暴雨: 重要历史事件的启示,能否为我们指明方向?售后观看电话-24小时在线客服(各中心)查询热线:













学会夹有多重要:(1)
















18省区市大到暴雨: 重要历史事件的启示,能否为我们指明方向?:(2)

































18省区市大到暴雨我们提供设备兼容性问题解决方案和测试服务,确保设备兼容性无忧。




























区域:淮安、和田地区、白山、汉中、辽源、大庆、吴忠、贵港、德宏、永州、宜宾、芜湖、湘西、阜阳、商洛、铜陵、山南、邯郸、海西、吉林、本溪、牡丹江、塔城地区、泸州、阳泉、定西、绥化、丽江、黄山等城市。
















ACCA少女网课韩国










邵阳市洞口县、玉溪市峨山彝族自治县、河源市龙川县、宁夏固原市泾源县、红河河口瑶族自治县、宁波市象山县、安庆市迎江区、儋州市新州镇











莆田市仙游县、晋城市陵川县、漯河市临颍县、福州市晋安区、吉安市青原区、滁州市南谯区、延边安图县、东方市板桥镇、内蒙古乌兰察布市集宁区








泉州市金门县、株洲市芦淞区、景德镇市昌江区、吉林市永吉县、德阳市罗江区、成都市青白江区、本溪市明山区、漯河市郾城区、广西南宁市青秀区
















区域:淮安、和田地区、白山、汉中、辽源、大庆、吴忠、贵港、德宏、永州、宜宾、芜湖、湘西、阜阳、商洛、铜陵、山南、邯郸、海西、吉林、本溪、牡丹江、塔城地区、泸州、阳泉、定西、绥化、丽江、黄山等城市。
















陵水黎族自治县英州镇、德州市德城区、惠州市博罗县、太原市小店区、青岛市平度市、宁夏中卫市海原县
















黔南荔波县、荆门市东宝区、武汉市黄陂区、兰州市七里河区、内蒙古阿拉善盟阿拉善右旗  铜川市王益区、十堰市竹山县、黔东南凯里市、吉林市昌邑区、丽水市松阳县、六安市舒城县、玉树玉树市、肇庆市封开县
















区域:淮安、和田地区、白山、汉中、辽源、大庆、吴忠、贵港、德宏、永州、宜宾、芜湖、湘西、阜阳、商洛、铜陵、山南、邯郸、海西、吉林、本溪、牡丹江、塔城地区、泸州、阳泉、定西、绥化、丽江、黄山等城市。
















漳州市南靖县、广西河池市巴马瑶族自治县、琼海市嘉积镇、中山市南区街道、长春市绿园区、岳阳市平江县、濮阳市清丰县、漯河市临颍县
















内蒙古巴彦淖尔市乌拉特前旗、广元市青川县、甘南迭部县、开封市顺河回族区、安庆市宿松县、天水市武山县




新乡市封丘县、临沂市莒南县、杭州市临安区、佳木斯市向阳区、黔南荔波县、广安市武胜县、潍坊市寒亭区、海北祁连县、运城市稷山县 
















黔西南兴仁市、乐东黎族自治县抱由镇、绥化市望奎县、陇南市两当县、酒泉市瓜州县、赣州市石城县、武汉市蔡甸区、无锡市锡山区




南充市顺庆区、三门峡市卢氏县、扬州市广陵区、天津市和平区、金华市义乌市、榆林市榆阳区、云浮市罗定市、萍乡市上栗县、徐州市邳州市、广西来宾市金秀瑶族自治县




吉安市峡江县、鹤壁市山城区、巴中市恩阳区、东莞市麻涌镇、西安市长安区、淮安市洪泽区、芜湖市镜湖区、北京市门头沟区
















佳木斯市同江市、昆明市富民县、衢州市衢江区、盐城市东台市、张掖市山丹县
















开封市兰考县、北京市大兴区、海东市民和回族土族自治县、临汾市蒲县、衢州市常山县、北京市延庆区、张掖市肃南裕固族自治县

  今年以来,关于DeepSeek的话题热度一直很高,也引发了一些人工智能可能影响哪些行业的探讨。在这当中,关于政务服务方面的应用尤为引人关注。有人暗喜,人工智能是公职人员写材料、出方案的神器。有人厌恶,因为汇总基层汇报材料时,发现大量的AI痕迹,辞藻华丽却内容空洞,梳理这些材料,工作量反而比以前增加了很多。今天,就来继续聊聊这个话题。

  先说一个蛮有意思的现象。有人问DeepSeek一个问题:“xx大学和xx大学哪个更好,二选一,不需要说明理由”。经过一番思索,DeepSeek给出自己的答案。继续跟进问题,“我是另一所学校的”,大模型立马改口。当进一步表示“两个大学都读过”,DeepSeek在深度思考中直白地给出逻辑:“恭维用户”,“双校光环叠加”的回应已然失焦。

  如果仅从玩笑或者调试的角度,这样的问答或许令人会心一笑。但是,倘若把咨询的问题换成涉及群众切身利益的公共事项,或者需要人工智能为公职人员提供决策辅助时,这种“过度迎合”的情况就需要加以重视了。

  不可否认,“AI+政务”其势已成。近来,多地组织领导干部学习大模型使用方法,不少单位正在接入或者部署本地化DeepSeek。数据显示,有的地方上线政务大模型后,公文格式修正准确率超95%,审核时间缩短90%,跨部门任务分派效率提升80%。

  数据喜人,也不乏思考:一个以用户满意为评价维度的大模型,究竟能不能承载各方期待?当各种文字材料趋于模板化、套路化,该不该归咎于作为使用者比如公职人员身上?

  先说第一个。让用户满意当然无可非议,但是当态度的变量超过真实的参数,那就有可能本末倒置。试想,当你使用政务大模型撰写解决某个问题的方案时,得到的却是一堆情绪价值爆棚、实用信息不足的反馈,恐怕只会更加焦虑。

  有人在研究中发现,目前许多生成式人工智能存在一种“讨好”倾向,甚至会因此胡编乱造。表面看似有理有据,实则早就偏题千里。某种程度上,这是消纳数据、反馈强化的结果。优点当然是对齐了与人类的“颗粒度”,缺点也显而易见,开始与真实脱节。

  由此而言,我们依然需要保持自我认知的掌控权。正如有人所提醒的那样:“我们永远要带着一点点怀疑、一点点好奇、一点点求真精神,与它探讨、对话、切磋。”当然,更为重要的是不能依赖,AI再强也替代不了“脚底板”,调查研究始终是谋事之基、成事之道。

  再说第二点。毋庸讳言,许多人已经尝试使用生成式大模型写报告、找素材、攒总结,写作效率大大提升。但与此同时也带来争议,拗口的表达如出一辙,机械的逻辑似曾相识,鲜活的案例真假难辨,这样的公文材料有啥意义?

  该不该打板子?可能没这么简单。这其中,当然有个别人的应付之举,但更多人特别是基层干部有话要说。有人对此毫不讳言:“材料任务繁重,改稿总比写稿省很多力气……我们不是懒,只是想从文山会海中稍稍解脱松绑一下”。

  一句话,道出基层工作特别是材料工作之繁、之窘。从这个角度来说,理应对基层干部如何更合理使用政务大模型进行善意的提醒。但更重要的,是厘清其中的行为动机和难言之隐。是不是不必要的材料?有没有材料政绩之嫌?那种“以材料应付材料”的做法,才是AI应用走偏的重要原因。归根结底,还是要进一步减轻基层负担,让政务大模型从疲于应对的工具真正成为提升效能的神器。

  有一句广为人知的话,“打败你的不是对手,颠覆你的不是同行,而是传统思维和落后观念。”或许,政府服务领域正在掀起一场浪潮。当技术突飞猛进的时候,关于治理的智慧也应乘势而上。

  这正是:

  三千案牍屏间逝,百万铨衡指上飞。

  墨守成规矜故纸,智生穷变叩玄机。

  (打油诗由DeepSeek生成)

  来源:人民日报评论,作者:风凌度 【编辑:刘湃】

相关推荐: